skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "De_Kauwe, M G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Urban Land Surface Models (ULSMs) simulate energy and water exchanges between the urban surface and atmosphere. However, earlier systematic ULSM comparison projects assessed the energy balance but ignored the water balance, which is coupled to the energy balance. Here, we analyze the water balance representation in 19 ULSMs participating in the Urban‐PLUMBER project using results for 20 sites spread across a range of climates and urban form characteristics. As observations for most water fluxes are unavailable, we examine the water balance closure, flux timing, and magnitude with a score derived from seven indicators expecting better scoring models to capture the latent heat flux more accurately. We find that the water budget is only closed in 57% of the model‐site combinations assuming closure when annual total incoming fluxes (precipitation and irrigation) fluxes are within 3% of the outgoing (all other) fluxes. Results show the timing is better captured than magnitude. No ULSM has passed all water balance indicators for any site. Models passing more indicators do not capture the latent heat flux more accurately refuting our hypothesis. While output reporting inconsistencies may have negatively affected model performance, our results indicate models could be improved by explicitly verifying water balance closure and revising runoff parameterizations. By expanding ULSM evaluation to the water balance and related to latent heat flux performance, we demonstrate the benefits of evaluating processes with direct feedback mechanisms to the processes of interest. 
    more » « less
  2. Abstract Theory predicts that rising CO2increases global photosynthesis, a process known as CO2fertilization, and that this is responsible for much of the current terrestrial carbon sink. The estimated magnitude of the historic CO2fertilization, however, differs by an order of magnitude between long-term proxies, remote sensing-based estimates and terrestrial biosphere models. Here we constrain the likely historic effect of CO2on global photosynthesis by combining terrestrial biosphere models, ecological optimality theory, remote sensing approaches and an emergent constraint based on global carbon budget estimates. Our analysis suggests that CO2fertilization increased global annual terrestrial photosynthesis by 13.5 ± 3.5% or 15.9 ± 2.9 PgC (mean ± s.d.) between 1981 and 2020. Our results help resolve conflicting estimates of the historic sensitivity of global terrestrial photosynthesis to CO2and highlight the large impact anthropogenic emissions have had on ecosystems worldwide. 
    more » « less